目录

常微分方程

常微分方程是研究含有一个自变量的微分方程的学科,是数学各专业的重要基础课程,在物理、工程、生物、经济等领域有广泛应用。

课程概述

常微分方程的主要研究内容包括:

  1. 初等积分法:可分离变量、齐次方程、线性方程、恰当方程
  2. 解的存在唯一性:Picard迭代法、逐次逼近、Lipschitz条件
  3. 高阶线性方程:常系数、变系数、幂级数解法
  4. 线性微分方程组:矩阵方法、基本解矩阵、指数矩阵
  5. 定性理论与稳定性:平衡点、稳定性、极限环、分支
  6. 边值问题:Sturm-Liouville理论、特征值问题

课程目录

基础理论

高阶方程

线性方程组

定性理论与稳定性

边值问题与特殊函数

应用与数值方法

参考教材

  1. 王高雄等.《常微分方程》(第3版). 高等教育出版社
  2. 丁同仁、李承治.《常微分方程教程》. 高等教育出版社
  3. Coddington, E.A. & Levinson, N.《Theory of Ordinary Differential Equations》

<html> <script type=“text/javascript” async

src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js">

</script> </html>